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Abstract

We study the regularity of a distributional solution (u, p) of the 3D
incompressible evolution Navier-Stokes equations. Let B, denote
concentric balls in R3 with radius r. We will show that if

p € L™(0,1; LY(By)), m> 2, and if u is sufficiently small in
L%°(0,1; L3°°(By)), without any assumption on its gradient, then
u is bounded in Byi_; x (7,1) for any 7 > 0. It is a borderline case
of the usual Serrin-type regularity criteria, and extends the
steady-state result of Kim-Kozono to the time dependent setting.
arXiv:1310.8307

This is a joint work with Yuwen Luo.
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Part 1

Background
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3D incompressible Navier-Stokes equations (NS)
Denote B, = {x € R3: |x| < r} and D = By x (0,1)
Consider (NS) for velocity and pressure (u,p) : D — R3 x R,
Oty —Au+ (u-V)u+Vp=0, divu=0, (1)

in D, with O = %, u-V= Z?:l uj'aj, 8j = Bixj
Goal Interior regularity of a given distributional solution (u, p) in
D satisfying

ue L0,1;13>°(By)), small

p € L>75(0,1; L}(By)), large ok

Above 13> = weak L3, a member of Lorentz spaces L9".
Recall 31 C [3 C L3 and 1/|x| € L3°°.
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Distributional solution versus very weak solution
(u,p) € L?(D;R3) x L}(D) is a distributional solution of NS if
/ / (~0:¢ — AQ) = 3" w9,y — pdiv g) dxdt =0 (2)
for any ¢ € C2(D;R?), and
/B u(x,t) - V(x)dx =0, Vo€ Cl(By), aet (3)
:
u € L2(D;R3) is a very weak solution of NS if

/ / (~0— 8 -3 u,-uja,-g) dxdt = 0 (4)

for any ¢ € C2(D;R3) with div¢ = 0, and (3) holds.
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(continued)

e No initial or boundary condition. No Vu assumption.
e No pressue for very weak solution.
e A distributional solution is automatically a very weak solution.

e The converse is false, e.g.
1
u=g(t)Vh(x), p=—g'(t)h(x)— §£,f2|Vh|2 (5)

with Ah=0, g€ L>®, and g’ & 1.

A very weak solution u is called a weak solution if it is also in the

energy class
ue L>(0,1; L%) N L%(0,1; HY)
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Regularity

For zg = (xo, tp), denote Q(zo,r) = B,(x0) x (to — r?, to).

We say u is regular at z if u € L*°(Q(zp,r)) for some r > 0.

(It usually implies u is smooth in x.)

Open problem: Regularity of weak solutions.

24



Serrin-type regularity criteria for weak solutions

A weak solution u in By x (0,1) is regular in Bi_, x (7,1),
VT >0, if
ue L519 = [5(0,1; L9(By))
with
1. subcritical case: ¢ + ¢ <1 (Serrin 62)
2. borderline cases: % + % =1,q9>3
(Ladyzhenskaya, Giga, Sohr, Struwe)
3. endpoint case: ¢ =3, s = oo (Escauriaza-Seregin-Sverak 02)
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(continued)

In Lorentz spaces, a weak solution u is regular if

Luells> 242-19>3 (Takahashi 90)
2. uelsrLr™, 242=19>3 (Sohr 01)
3. Ju(x, t)] < W 0<o<1 (Chen-Price 01)
4. ue L5719 and small, %—l— % =19 >3 (Kim-Kozono 04)
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Enemy of regularity

Self-similar blow-up rate

Cs
lu(x,t)| 2 ——————
x| + VT —t
HRHSHLSLq =00

IRHS] s 0.0 = CC

Smallness kills the enemy.
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Regularity results for distributional solutions

For distributional solutions not in the energy class, the only known
results are for stationary solutions:

1. Removable singularity (Dyer-Edmunds, Shapiro, Choe-Kim)
If (u, p)(x) distributional solution in B1\{0} with
» u(x) = o(|x|71) as |x| — 0, OR
> uc L3(Bl),

then (u, p) solution in By with u e L.
2. Regularity (Kim-Kozono 06)
If (u,p) € L3°° x L' with ||u]| 3.0 small, then u € L52..
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(continued)

3. Landau solution  (optimality) (Slezkin, Landau)

For any b € R3, there are U, P? minus-one homogeneous
solution in R3 of

—Au+u-Vu+Vp=b>bdy, divu=0.

4. Asymptotics (Miura-Tsai 2012)

For any 0 < v < 1, if u(x) very weak solution in B;\{0} with

lu(x)| < ﬁ £ < €4, then for some U?,

u(x) = V()| <

x|
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Time-dependent distributional solution
No previous results.
Motivation For Q = R3 or exterior domain, the class
u € L>(0, 00; L3°°(Q)) (6)

contains stationary and time-periodic solutions, and is the natural
space for self-similar solutions and for solutions with non-decaying
boundary data. However,

1. in the class (6) one cannot construct weak solutions. One can
construct mild solutions, which are not in the energy class
even locally;

2. we need local pointwise bound to study, e.g., spatial decay of
time-periodic solutions. (Kang-Miura-Tsai 2012)
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Criticality of L>®[3>

NS in R3 with zero initial data is equivalent to u = I'(v),

F(w)i(x, ) = —/O [ (@1Sitx =yt = ey )

where S is the fundamental solution of the Stokes system in R,

IDLS(x )] S (x| + V) >
By generalized Young inequality for convolution, if g + % =1,

2
IT()l[sea < Nullzspa -

It is not applicable at the endpoint (g,s) = (3, c0).
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Part 2

Results
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Main Theorem

There is €1 > 0 such that, if (u, p) distributional solution of NS in
Bi x (0,1) and for some m > 2,

u € L(0,1; L>°(By)),
ull oo p3.00 < €1,
pelL™0,1;LY(By)), large ok

then u € L*(B;—; x (7,1)) for any 7 > 0.

Remarks:

(i) End point case, smallness on u, not on p.
e1 independent of m and ||p||.

(ii) Compare Kim-Kozono 2004 for weak solution in energy class
(no assumption on p, but Vu € L?L?)

(iii) It extends Kim-Kozono 2006 stationary case.

(iv) The integrability of p is mild, but nontrivial unless Q = R3.
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Suppose for 3 < ¢ < 00,3 <s< o0, 242 <1,

u e L5(0,1; L9(By)) N L®(0, 1; LY(By))

is a very weak solution, then u € L*°(B;_; x (7,1)) for any 7 > 0.

Suppose for 3 < g < o0, 3 <s < oo, %—1—% <1 m>1,
2
m> 55
u € L5(0,1; L9(By)) N L>=(0,1; LY(By)), peL™0,1;LYBy))

is a distributional solution of NS in B; x (0, 1), then
u€ L*®(Bi_; x (r,1)) for any 7 > 0.
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Stationary case

[Kim-Kozono]
There is €2 > 0 such that, if (u, p) distributional solution of NS in
Q with p € L and ||u|;3.00 < €2, then u € L

loc*

There is €3 > 0 such that, if u very weak solution of NS in Q with
|lull 3.00 < €3, then u € LFS and

loc

C
 —
WO = st o 1Vl

19 /24



Part 3

Sketch of proof
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1. Linear estimate

Yamazaki: For 1< p < g < oo, (g < 3 for exterior domain)

Vet o dt < ClCl e

»1(R3)
Thus the solution operator for Stokes system in R3 x (0, 00)
Otv—Av+Vp=divF, divv=0, v|t=g=0

defined by duality for ( € C°, div({ =0,
t
(®F)(t).C) = /0 (= F(t — 7), 8™ 0))dr,

maps F € L°(0, 00; L) to F € C,([0,00), L5 ™), 1 < s < 3.

Remark. For Theorem 1', ® is defined by usual convolution and
pointwise estimates for fundamental solution.
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2. Reformulation

Extension with cut-off ¢(x, t)

d=up+Vn, p=pp—0m+An, n= x (V- u),

1
47 |x|
satisfies in R® x (0, 1)

Orv—Av+Vg =P +div(F! —gu®v), divv=0, v|i—o=0,
which is equivalent to the linear operator equation in v
v=1"—o(pu®v) (7)

where v0 defined by convolution of fundamental solution with the
source term f0 + div F*.



3. Existence of regular solution

e For some § = §(m) > 0,

vo € Co([0,1]; L3> N [3H9°0(R3))

e Equation (7) has a mild solution
v € Gy ([0, 1]; L2 0 L3H0(R3))

It is also a very weak solution and, by Lemma, bounded for t > 0.
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4. Uniqueness of less regular solution

e Our i =up+Vn

i€ L(0,1; L>>®(R?))

e Solution v of (7) is unique in the class

v € L>(0,1; L>*(R?))

e Thus the regular solution in Step 3 agrees with i, which equals u
in Bl—T X (T,l).
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