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Abstract

We study the regularity of a distributional solution (u, p) of the 3D
incompressible evolution Navier-Stokes equations. Let Br denote
concentric balls in R3 with radius r . We will show that if
p ∈ Lm(0, 1; L1(B1)), m > 2, and if u is sufficiently small in
L∞(0, 1; L3,∞(B1)), without any assumption on its gradient, then
u is bounded in B1−τ × (τ, 1) for any τ > 0. It is a borderline case
of the usual Serrin-type regularity criteria, and extends the
steady-state result of Kim-Kozono to the time dependent setting.
arXiv:1310.8307

This is a joint work with Yuwen Luo.
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Part 1

Background
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3D incompressible Navier-Stokes equations (NS)

Denote Br = {x ∈ R3 : |x | < r} and D = B1 × (0, 1)

Consider (NS) for velocity and pressure (u, p) : D → R3 × R,

∂tu −∆u + (u · ∇)u +∇p = 0, div u = 0, (1)

in D, with ∂t = ∂
∂t , u · ∇ =

∑3
j=1 uj∂j , ∂j = ∂

∂xj

Goal Interior regularity of a given distributional solution (u, p) in
D satisfying

u ∈ L∞(0, 1; L3,∞(B1)), small

p ∈ L2+ε(0, 1; L1(B1)), large ok

Above L3,∞ = weak L3, a member of Lorentz spaces Lq,r .
Recall L3,1 ⊂ L3 ⊂ L3,∞ and 1/|x | ∈ L3,∞.
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Distributional solution versus very weak solution

(u, p) ∈ L2(D;R3)× L1(D) is a distributional solution of NS if∫∫
D

(
u · (−∂tζ −∆ζ)−

∑
uiuj∂iζj − p div ζ

)
dxdt = 0 (2)

for any ζ ∈ C 2
c (D;R3), and∫

B1

u(x , t) · ∇φ(x)dx = 0, ∀φ ∈ C 1
c (B1), a.e. t. (3)

u ∈ L2(D;R3) is a very weak solution of NS if∫∫
D

(
u · (−∂tζ −∆ζ)−

∑
uiuj∂iζj

)
dxdt = 0 (4)

for any ζ ∈ C 2
c (D;R3) with div ζ = 0, and (3) holds.
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(continued)

• No initial or boundary condition. No ∇u assumption.

• No pressue for very weak solution.

• A distributional solution is automatically a very weak solution.

• The converse is false, e.g.

u = g(t)∇h(x), p = −g ′(t)h(x)− 1

2
g2|∇h|2 (5)

with ∆h = 0, g ∈ L∞, and g ′ 6∈ L1.

A very weak solution u is called a weak solution if it is also in the
energy class

u ∈ L∞(0, 1; L2) ∩ L2(0, 1;H1)

7 / 24



Regularity

For z0 = (x0, t0), denote Q(z0, r) = Br (x0)× (t0 − r2, t0).

We say u is regular at z0 if u ∈ L∞(Q(z0, r)) for some r > 0.

(It usually implies u is smooth in x .)

Open problem: Regularity of weak solutions.
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Serrin-type regularity criteria for weak solutions

A weak solution u in B1 × (0, 1) is regular in B1−τ × (τ, 1),
∀τ > 0, if

u ∈ LsLq = Ls(0, 1; Lq(B1))

with

1. subcritical case: 3
q + 2

s < 1 (Serrin 62)

2. borderline cases: 3
q + 2

s = 1, q > 3
(Ladyzhenskaya, Giga, Sohr, Struwe)

3. endpoint case: q = 3, s =∞ (Escauriaza-Seregin-Sverak 02)
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(continued)

In Lorentz spaces, a weak solution u is regular if

1. u ∈ LsLq,∞, 3
q + 2

s = 1, q > 3 (Takahashi 90)

2. u ∈ Ls,rLq,∞, 3
q + 2

s = 1, q > 3 (Sohr 01)

3. |u(x , t)| ≤ ε
|x |1−θ|t|θ/2 , 0 < θ < 1 (Chen-Price 01)

4. u ∈ Ls,rLq,∞ and small, 3
q + 2

s = 1, q ≥ 3 (Kim-Kozono 04)

10 / 24



Enemy of regularity

Self-similar blow-up rate

|u(x , t)| ≥ C∗

|x |+
√
T − t

‖RHS‖LsLq =∞

‖RHS‖Ls,rLq,∞ = CC∗

Smallness kills the enemy.
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Regularity results for distributional solutions

For distributional solutions not in the energy class, the only known
results are for stationary solutions:

1. Removable singularity (Dyer-Edmunds, Shapiro, Choe-Kim)

If (u, p)(x) distributional solution in B1\{0} with
I u(x) = o(|x |−1) as |x | → 0, OR
I u ∈ L3(B1),

then (u, p) solution in B1 with u ∈ L∞loc

2. Regularity (Kim-Kozono 06)

If (u, p) ∈ L3,∞ × L1 with ‖u‖L3,∞ small, then u ∈ L∞loc .
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(continued)

3. Landau solution (optimality) (Slezkin, Landau)

For any b ∈ R3, there are Ub,Pb minus-one homogeneous
solution in R3 of

−∆u + u · ∇u +∇p = bδ0, div u = 0.

4. Asymptotics (Miura-Tsai 2012)

For any 0 < α < 1, if u(x) very weak solution in B1\{0} with
|u(x)| ≤ ε

|x | , ε < εα, then for some Ub,

|u(x)− Ub(x)| ≤ Cε

|x |α
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Time-dependent distributional solution

No previous results.

Motivation For Ω = R3 or exterior domain, the class

u ∈ L∞(0,∞; L3,∞(Ω)) (6)

contains stationary and time-periodic solutions, and is the natural
space for self-similar solutions and for solutions with non-decaying
boundary data. However,

1. in the class (6) one cannot construct weak solutions. One can
construct mild solutions, which are not in the energy class
even locally;

2. we need local pointwise bound to study, e.g., spatial decay of
time-periodic solutions. (Kang-Miura-Tsai 2012)
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Criticality of L∞L3,∞

NS in R3 with zero initial data is equivalent to u = Γ(u),

Γ(u)i (x , t) := −
∫ t

0

∫
R3

(∂kSij(x − y , t − s))(ujuk)(y , s)dyds

where Sij is the fundamental solution of the Stokes system in R3,

|D`
xS(x , t)| . (|x |+

√
t)−3−`

By generalized Young inequality for convolution, if 3
q + 2

s = 1,

‖Γ(u)‖LsLq . ‖u‖2
LsLq .

It is not applicable at the endpoint (q, s) = (3,∞).
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Part 2

Results
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Main Theorem

Theorem 1.
There is ε1 > 0 such that, if (u, p) distributional solution of NS in
B1 × (0, 1) and for some m > 2,

u ∈ L∞(0, 1; L3,∞(B1)),

‖u‖L∞L3,∞ ≤ ε1,

p ∈ Lm(0, 1; L1(B1)), large ok

then u ∈ L∞(B1−τ × (τ, 1)) for any τ > 0.

Remarks:
(i) End point case, smallness on u, not on p.

ε1 independent of m and ‖p‖.
(ii) Compare Kim-Kozono 2004 for weak solution in energy class

(no assumption on p, but ∇u ∈ L2L2)
(iii) It extends Kim-Kozono 2006 stationary case.
(iv) The integrability of p is mild, but nontrivial unless Ω = R3.
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Lemma. (subcritical case)
Suppose for 3 < q ≤ ∞, 3 ≤ s ≤ ∞, 3

q + 2
s < 1,

u ∈ Ls(0, 1; Lq(B1)) ∩ L∞(0, 1; L1(B1))

is a very weak solution, then u ∈ L∞(B1−τ × (τ, 1)) for any τ > 0.

Theorem 1’.
Suppose for 3 < q ≤ ∞, 3 ≤ s ≤ ∞, 3

q + 2
s ≤ 1, m ≥ 1,

m > 2q
3(q−3) ,

u ∈ Ls(0, 1; Lq(B1)) ∩ L∞(0, 1; L1(B1)), p ∈ Lm(0, 1; L1(B1))

is a distributional solution of NS in B1 × (0, 1), then
u ∈ L∞(B1−τ × (τ, 1)) for any τ > 0.
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Stationary case

Theorem 2. [Kim-Kozono]
There is ε2 > 0 such that, if (u, p) distributional solution of NS in
Ω with p ∈ L1 and ‖u‖L3,∞ ≤ ε2, then u ∈ L∞loc .

Theorem 3.
There is ε3 > 0 such that, if u very weak solution of NS in Ω with
‖u‖L3,∞ ≤ ε3, then u ∈ L∞loc and

|u(x)| ≤ C

dist(x , ∂Ω)
‖u‖L3,∞
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Part 3

Sketch of proof
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1. Linear estimate

Yamazaki: For 1 < p ≤ q <∞, (q < 3 for exterior domain)∫ ∞
0

t
3

2p
− 3

2q
− 1

2

∥∥∥∇et∆ζ
∥∥∥
Lq,1(R3)

dt ≤ C ‖ζ‖
Lp,1σ (R3)

Thus the solution operator for Stokes system in R3 × (0,∞)

∂tv −∆v +∇p = div F , div v = 0, v |t=0 = 0

defined by duality for ζ ∈ C∞c , div ζ = 0,

((ΦF )(t), ζ) =

∫ t

0
(−Fjk(t − τ), ∂j(e

τ∆ζ)k)dτ,

maps F ∈ L∞(0,∞; Ls,∞) to ΦF ∈ Cw ([0,∞), Ls
∗,∞
σ ), 1 < s < 3.

Remark. For Theorem 1’, Φ is defined by usual convolution and
pointwise estimates for fundamental solution.
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2. Reformulation

Extension with cut-off ϕ(x , t)

ũ = uϕ+∇η, p̃ = ϕp − ∂tη + ∆η, η =
1

4π|x |
∗ (∇ϕ · u),

satisfies in R3 × (0, 1)

∂tv −∆v +∇q = f 0 +div(F 1− ϕ̃u⊗v), div v = 0, v |t=0 = 0,

which is equivalent to the linear operator equation in v

v = v0 − Φ(ϕ̃u ⊗ v) (7)

where v0 defined by convolution of fundamental solution with the
source term f 0 + div F 1.
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3. Existence of regular solution

• For some δ = δ(m) > 0,

v0 ∈ Cw ([0, 1]; L3,∞ ∩ L3+δ,∞(R3))

• Equation (7) has a mild solution

v ∈ Cw ([0, 1]; L3,∞ ∩ L3+δ,∞(R3))

It is also a very weak solution and, by Lemma, bounded for t > 0.
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4. Uniqueness of less regular solution

• Our ũ = uϕ+∇η

ũ ∈ L∞(0, 1; L3,∞(R3))

• Solution v of (7) is unique in the class

v ∈ L∞(0, 1; L3,∞(R3))

• Thus the regular solution in Step 3 agrees with ũ, which equals u
in B1−τ × (τ, 1).
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