Regularity criteria in weak L^3 for 3D incompressible Navier-Stokes equations

Tai-Peng Tsai

The University of British Columbia, and Center of Advanced Study in Theoretical Sciences, National Taiwan University

CASTS-LJLL workshop on Applied Mathematics and Mathematical Sciences, May 26 - 29, 2014 @ National Taiwan University, Taipei

Abstract

We study the regularity of a distributional solution (u, p) of the 3D incompressible evolution Navier-Stokes equations. Let B_r denote concentric balls in \mathbb{R}^3 with radius r. We will show that if $p \in L^m(0, 1; L^1(B_1)), m > 2$, and if u is sufficiently small in $L^{\infty}(0, 1; L^{3,\infty}(B_1))$, without any assumption on its gradient, then u is bounded in $B_{1-\tau} \times (\tau, 1)$ for any $\tau > 0$. It is a borderline case of the usual Serrin-type regularity criteria, and extends the steady-state result of Kim-Kozono to the time dependent setting. arXiv:1310.8307

This is a joint work with Yuwen Luo.

Outline

- 1. Background
- 2. Results
- 3. Sketch of proof

Part 1

Background

3D incompressible Navier-Stokes equations (NS)

Denote $B_r = \{x \in \mathbb{R}^3 : |x| < r\}$ and $D = B_1 \times (0, 1)$ Consider (NS) for velocity and pressure $(u, p) : D \to \mathbb{R}^3 \times \mathbb{R}$,

$$\partial_t u - \Delta u + (u \cdot \nabla)u + \nabla p = 0, \quad \text{div } u = 0,$$
 (1)

in *D*, with $\partial_t = \frac{\partial}{\partial t}$, $u \cdot \nabla = \sum_{j=1}^3 u_j \partial_j$, $\partial_j = \frac{\partial}{\partial x_j}$

Goal Interior regularity of a given distributional solution (u, p) in D satisfying

$$egin{aligned} & u \in L^\infty(0,1;L^{3,\infty}(B_1)), & ext{small} \ & p \in L^{2+arepsilon}(0,1;L^1(B_1)), & ext{large ok} \end{aligned}$$

Above $L^{3,\infty}$ = weak L^3 , a member of Lorentz spaces $L^{q,r}$. Recall $L^{3,1} \subset L^3 \subset L^{3,\infty}$ and $1/|x| \in L^{3,\infty}$.

Distributional solution versus very weak solution

$$(u, p) \in L^{2}(D; \mathbb{R}^{3}) \times L^{1}(D)$$
 is a distributional solution of NS if
$$\iint_{D} \left(u \cdot (-\partial_{t}\zeta - \Delta\zeta) - \sum u_{i}u_{j}\partial_{i}\zeta_{j} - p\operatorname{div}\zeta \right) dxdt = 0 \quad (2)$$

for any $\zeta \in C^2_c(D;\mathbb{R}^3)$, and

$$\int_{B_1} u(x,t) \cdot \nabla \phi(x) dx = 0, \quad \forall \phi \in C^1_c(B_1), \quad a.e. \ t.$$
 (3)

 $u \in L^2(D; \mathbb{R}^3)$ is a very weak solution of NS if

$$\iint_{D} \left(u \cdot (-\partial_t \zeta - \Delta \zeta) - \sum u_i u_j \partial_i \zeta_j \right) dx dt = 0$$
 (4)

for any $\zeta \in C^2_c(D; \mathbb{R}^3)$ with $\operatorname{div} \zeta = 0$, and (3) holds.

(continued)

- No initial or boundary condition. No ∇u assumption.
- No pressue for very weak solution.
- A distributional solution is automatically a very weak solution.
- The converse is false, e.g.

$$u = g(t) \nabla h(x), \quad p = -g'(t)h(x) - \frac{1}{2}g^2 |\nabla h|^2$$
 (5)

with $\Delta h = 0$, $g \in L^{\infty}$, and $g' \not\in L^1$.

A very weak solution u is called a weak solution if it is also in the energy class

$$u \in L^{\infty}(0,1;L^2) \cap L^2(0,1;H^1)$$

Regularity

For $z_0 = (x_0, t_0)$, denote $Q(z_0, r) = B_r(x_0) \times (t_0 - r^2, t_0)$. We say u is regular at z_0 if $u \in L^{\infty}(Q(z_0, r))$ for some r > 0. (It usually implies u is smooth in x.)

Open problem: Regularity of weak solutions.

Serrin-type regularity criteria for weak solutions

A weak solution u in $B_1 \times (0,1)$ is regular in $B_{1-\tau} \times (\tau,1)$, $\forall \tau > 0$, if

$$u \in L^{s}L^{q} = L^{s}(0, 1; L^{q}(B_{1}))$$

with

1. subcritical case: $\frac{3}{q} + \frac{2}{s} < 1$ (Serrin 62)2. borderline cases: $\frac{3}{q} + \frac{2}{s} = 1$, q > 3
(Ladyzhenskaya, Giga, Sohr, Struwe)3. endpoint case: q = 3, $s = \infty$ (Escauriaza-Seregin-Sverak 02)

(continued)

In Lorentz spaces, a weak solution u is regular if

1.
$$u \in L^{s}L^{q,\infty}$$
, $\frac{3}{q} + \frac{2}{s} = 1$, $q > 3$ (Takahashi 90)
2. $u \in L^{s,r}L^{q,\infty}$, $\frac{3}{q} + \frac{2}{s} = 1$, $q > 3$ (Sohr 01)
3. $|u(x,t)| \le \frac{\varepsilon}{|x|^{1-\theta}|t|^{\theta/2}}$, $0 < \theta < 1$ (Chen-Price 01)
4. $u \in L^{s,r}L^{q,\infty}$ and small, $\frac{3}{q} + \frac{2}{s} = 1$, $q \ge 3$ (Kim-Kozono 04)

Enemy of regularity

Self-similar blow-up rate

$$|u(x,t)| \ge \frac{C_*}{|x| + \sqrt{T - t}}$$
$$\|\mathsf{RHS}\|_{L^s L^q} = \infty$$
$$\|\mathsf{RHS}\|_{L^{s,r} L^{q,\infty}} = CC_*$$

Smallness kills the enemy.

Regularity results for distributional solutions

For distributional solutions not in the energy class, the only known results are for stationary solutions:

- 1. Removable singularity (Dyer-Edmunds, Shapiro, Choe-Kim) If (u, p)(x) distributional solution in $B_1 \setminus \{0\}$ with $\downarrow u(x) = o(|x|^{-1})$ as $|x| \to 0$, OR $\downarrow u \in L^3(B_1)$, then (u, p) solution in B_1 with $u \in L_{loc}^{\infty}$
- 2. Regularity (Kim-Kozono 06) If $(u, p) \in L^{3,\infty} \times L^1$ with $||u||_{L^{3,\infty}}$ small, then $u \in L^{\infty}_{loc}$.

(continued)

3. Landau solution (optimality) (Slezkin, Landau) For any $b \in \mathbb{R}^3$, there are U^b , P^b minus-one homogeneous solution in \mathbb{R}^3 of

$$-\Delta u + u \cdot \nabla u + \nabla p = b\delta_0, \quad \operatorname{div} u = 0.$$

4. Asymptotics

(Miura-Tsai 2012)

For any $0 < \alpha < 1$, if u(x) very weak solution in $B_1 \setminus \{0\}$ with $|u(x)| \leq \frac{\varepsilon}{|x|}$, $\varepsilon < \varepsilon_{\alpha}$, then for some U^b ,

$$|u(x) - U^b(x)| \leq \frac{C\varepsilon}{|x|^{lpha}}$$

Time-dependent distributional solution

No previous results.

Motivation For $\Omega = \mathbb{R}^3$ or exterior domain, the class

$$u \in L^{\infty}(0,\infty; L^{3,\infty}(\Omega))$$
(6)

contains stationary and time-periodic solutions, and is the natural space for self-similar solutions and for solutions with non-decaying boundary data. However,

- in the class (6) one cannot construct weak solutions. One can construct mild solutions, which are not in the energy class even locally;
- we need local pointwise bound to study, e.g., spatial decay of time-periodic solutions. (Kang-Miura-Tsai 2012)

Criticality of $L^{\infty}L^{3,\infty}$

NS in \mathbb{R}^3 with zero initial data is equivalent to $u = \Gamma(u)$,

$$\Gamma(u)_i(x,t) := -\int_0^t \int_{\mathbb{R}^3} (\partial_k S_{ij}(x-y,t-s))(u_j u_k)(y,s) dy ds$$

where S_{ij} is the fundamental solution of the Stokes system in \mathbb{R}^3 ,

$$|D_x^\ell S(x,t)| \lesssim (|x|+\sqrt{t})^{-3-\ell}$$

By generalized Young inequality for convolution, if $\frac{3}{q} + \frac{2}{s} = 1$,

$$\|\Gamma(u)\|_{L^{s}L^{q}} \lesssim \|u\|_{L^{s}L^{q}}^{2}.$$

It is not applicable at the endpoint $(q, s) = (3, \infty)$.

Part 2

Results

Main Theorem

Theorem 1.

There is $\varepsilon_1 > 0$ such that, if (u, p) distributional solution of NS in $B_1 \times (0, 1)$ and for some m > 2,

$$\begin{split} & u \in L^{\infty}(0,1;L^{3,\infty}(B_1)), \\ & \|u\|_{L^{\infty}L^{3,\infty}} \leq \varepsilon_1, \\ & p \in L^m(0,1;L^1(B_1)), \quad \text{large ok} \end{split}$$

then $u \in L^{\infty}(B_{1- au} imes (au, 1))$ for any au > 0.

Remarks:

- (i) End point case, smallness on u, not on p.
 - ε_1 independent of *m* and ||p||.
- (ii) Compare Kim-Kozono 2004 for weak solution in energy class (no assumption on p, but $\nabla u \in L^2 L^2$)
- (iii) It extends Kim-Kozono 2006 stationary case.
- (iv) The integrability of p is mild, but nontrivial unless $\Omega = \mathbb{R}^3$.

Lemma. (subcritical case) Suppose for $3 < q \le \infty$, $3 \le s \le \infty$, $\frac{3}{q} + \frac{2}{s} < 1$,

$$u \in L^{s}(0,1;L^{q}(B_{1})) \cap L^{\infty}(0,1;L^{1}(B_{1}))$$

is a very weak solution, then $u \in L^{\infty}(B_{1-\tau} \times (\tau, 1))$ for any $\tau > 0$.

Theorem 1'. Suppose for $3 < q \le \infty$, $3 \le s \le \infty$, $\frac{3}{q} + \frac{2}{s} \le 1$, $m \ge 1$, $m > \frac{2q}{3(q-3)}$,

 $u \in L^{s}(0,1;L^{q}(B_{1})) \cap L^{\infty}(0,1;L^{1}(B_{1})), \quad p \in L^{m}(0,1;L^{1}(B_{1}))$

is a distributional solution of NS in $B_1 \times (0, 1)$, then $u \in L^{\infty}(B_{1-\tau} \times (\tau, 1))$ for any $\tau > 0$.

Stationary case

Theorem 2. [Kim-Kozono] There is $\varepsilon_2 > 0$ such that, if (u, p) distributional solution of NS in Ω with $p \in L^1$ and $||u||_{L^{3,\infty}} \le \varepsilon_2$, then $u \in L^{\infty}_{loc}$.

Theorem 3.

There is $\varepsilon_3 > 0$ such that, if *u* very weak solution of NS in Ω with $||u||_{L^{3,\infty}} \le \varepsilon_3$, then $u \in L^{\infty}_{loc}$ and

$$|u(x)| \leq \frac{C}{\operatorname{dist}(x,\partial\Omega)} \|u\|_{L^{3,\infty}}$$

Part 3

Sketch of proof

1. Linear estimate

- -----

Yamazaki: For 1 , <math>(q < 3 for exterior domain)

$$\int_0^\infty t^{\frac{3}{2p}-\frac{3}{2q}-\frac{1}{2}} \left\| \nabla e^{t\Delta} \zeta \right\|_{L^{q,1}(\mathbb{R}^3)} dt \leq C \left\| \zeta \right\|_{L^{p,1}_\sigma(\mathbb{R}^3)}$$

Thus the solution operator for Stokes system in $\mathbb{R}^3 imes (0,\infty)$

$$\partial_t v - \Delta v + \nabla p = \operatorname{div} F, \quad \operatorname{div} v = 0, \quad v|_{t=0} = 0$$

defined by duality for $\zeta \in C_c^\infty$, $\operatorname{div} \zeta = 0$,

$$((\Phi F)(t),\zeta) = \int_0^t (-F_{jk}(t-\tau),\partial_j(e^{\tau\Delta}\zeta)_k)d\tau,$$

maps $F \in L^{\infty}(0,\infty;L^{s,\infty})$ to $\Phi F \in C_w([0,\infty),L^{s^*,\infty}_{\sigma})$, 1 < s < 3.

Remark. For Theorem 1', Φ is defined by usual convolution and pointwise estimates for fundamental solution.

2. Reformulation

Extension with cut-off $\varphi(x, t)$

$$\tilde{u} = u\varphi + \nabla \eta, \quad \tilde{p} = \varphi p - \partial_t \eta + \Delta \eta, \quad \eta = \frac{1}{4\pi |x|} * (\nabla \varphi \cdot u),$$

satisfies in $\mathbb{R}^3\times(0,1)$

$$\partial_t v - \Delta v + \nabla q = f^0 + \operatorname{div}(F^1 - \tilde{\varphi} u \otimes v), \quad \operatorname{div} v = 0, \quad v|_{t=0} = 0,$$

which is equivalent to the linear operator equation in v

$$v = v^0 - \Phi(\tilde{\varphi} u \otimes v) \tag{7}$$

where v^0 defined by convolution of fundamental solution with the source term $f^0 + \operatorname{div} F^1$.

3. Existence of regular solution

• For some
$$\delta = \delta(m) > 0$$
,

$$v_0\in \mathit{C}_w([0,1];\mathit{L}^{3,\infty}\cap \mathit{L}^{3+\delta,\infty}(\mathbb{R}^3))$$

$$v \in \mathit{C}_w([0,1]; \mathit{L}^{3,\infty} \cap \mathit{L}^{3+\delta,\infty}(\mathbb{R}^3))$$

It is also a very weak solution and, by Lemma, bounded for t > 0.

4. Uniqueness of less regular solution

• Our
$$\tilde{\textit{u}} = \textit{u} \varphi + \nabla \eta$$

$$\tilde{u} \in L^{\infty}(0,1;L^{3,\infty}(\mathbb{R}^3))$$

• Solution v of (7) is unique in the class

$$v \in L^{\infty}(0,1;L^{3,\infty}(\mathbb{R}^3))$$

• Thus the regular solution in Step 3 agrees with \tilde{u} , which equals u in $B_{1-\tau} \times (\tau, 1)$.